ORIGINAL ARTICLE
Year : 2022  |  Volume : 9  |  Issue : 5  |  Page : 353-358

Our initial experience in optical coherence tomography in peripheral vasculature: A pictorial essay


1 Department of Vascular and Endovascular Surgery, 92 Base Hospital, Jammu and Kashmir, India
2 Department of Vascular and Endovascular Surgery, Army Hospital (R&R), Delhi, India
3 Department of Vascular and Endovascular Surgery, Command Hospital (Southern Command), Pune, Maharashtra, India
4 Department of Vascular and Endovascular Surgery, Command Hospital (Northern Command), Udhampur, Jammu and Kashmir, India
5 Department of Vascular and Endovascular Surgery, Command Hospital (Air Force), Bengaluru, Karnataka, India

Correspondence Address:
Dr. Rohit Mehra
Department of Vascular and Endovascular Surgery, Command Hospital (Southern Command), Pune, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijves.ijves_90_22

Rights and Permissions

Background: Optical coherence tomography (OCT) has been a cornerstone for intracoronary interventions for substantial years. The extrapolation of the benefits of this cutting-edge technology to the peripheral vasculature is still in its nascent stage. This pictorial essay was an endeavor to exhibit the role of OCT as a tool for visualization of peripheral vasculature. Aim: To ascertain adjunctive use of intravascular imaging through OCT of in vivo peripheral human arterial vasculature and to distinguish between lipid-rich, fibrous, and calcified atherosclerotic plaques and other lesions of peripheral vasculature. Subjects and Methods: OCT imaging was performed with commercially available OCT system which is a short mono-rail design with a fiberoptic imaging core integrated into a catheter. The optic imaging core rotates at a rate of 100–180 revolutions/s. OCT pull backs were performed in an automated fashion with simultaneous flushing of iso-osmolar contrast (Visipaque) and normal saline. The visualization of different lesions of peripheral human vasculature through the eye of OCT is presented here as a pictorial essay. Results: OCT has an evolving potential as a tool for monitoring, lesion characterization, assessment of retrogression, progression, and disease stabilization in peripheral vasculature. The technique provides optimal high-resolution lesion characterization akin to an optical biopsy. Conclusions: OCT as a tool for in vivo analysis of human peripheral vasculature provides superlative results. Larger studies will be required to validate a protocol for optimal usage in the peripheral human arteries.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed176    
    Printed6    
    Emailed0    
    PDF Downloaded28    
    Comments [Add]    

Recommend this journal